
_-" _::-Cq]:]: : •

I I

| Andrew B. Ph.ihps U
| John L. Bresma []
| Sterling Federal Systems []
| AI Research B_ch, Marl Stop 244-17 I[
| NASA Ames Research Center II

Moffett Field, CA 94035, ,

k._

(NA_A-TM-IO7907) NASA TILEWOf_LD MANUAL

(SYSTEM VERSION 2.2) (NASA) 52 p

G3/_l

N92-26116

Unclas

0091696

Ames Research Center

Artificial Intelligence Research Branch

Technical Report FTA-91-11

May, 1991

NASA TileWorld Manual

(System Version 2.2)

Andrew B. Philips and 3ohn L. Bresina

Sterling Federal Systems

NASA Ames Research Center

Mail Stop: 244-17

Moffett Field, CA 94035

September 1991

Contents

2

Introduction

1.1 Overview and History

1.2 TileWorld Simulator

1.3 Getting Started

1.3.1 Installation

1.3.2 Starting TileWorld

3

Tutorial

2.1 Interaction Commands

2.1.1 Ei_ectors

2.1.2 Sensors

2.2 Display Commands

2.2.1 Graphics Display

2.2.2 ASCII Display

2.3 Customization Commands

2.3.1

2.3.2

2.3.3

2.3.4

Static Configuration Creation

User Defined Winds

Creating Winds with the Mouse

Specifying Probabilistic Ei_ector Errors

3

3

4

5

5

5

7

7

8

8

Ii

ii

12

13

13

16

18

19

Command Reference 23

3.1 Interaction Commands 23

3.1.1 Eifectors 23

4

3.2

3.3

3.1.2 Sensors 24

Display Commands 25

3.2.1 Graphics Display 26

3.2.2 ASCII Display 27

Customization Commands 27

3.3.1 Static Configuration Construction 28

3.3.2 User Defined Winds 30

3.3.3 Probabilistic Eifector Errors 31

Programmer's Notes 35

4.1 Multiprocessing 35

4.1.1 Queues 35

4.1.2 Processes 36

4.1.3 Eifectors in Multiprocessing 37

4.1.4 Motion, Asynchronous Behavior, and Time 37

4.2 Allegro CL Graphics Commands 38

4.3 Adding New Probabilistic Eifector Errors 39

4.4 How the Wind Gusts and Scripts Are Done 40

Bibliography 43

A Files in the System 45

B Known Bugs 47'

Chapter 1

Introduction

1.1 Overview and History

This manual documents the commands of the NASA TileWorld simulator, as well as provid-

ing information about how to run it and extend it. The simulator, implemented in Common

Lisp with Common Windows, encodes a particular range in a spectrum of domains, for

controllable research experiments, collectively called NASA TileWorld. The domains in the

spectrum all involve a grid of cells, a set of tiles, and a set of agents which can grasp and

move tiles. Points along the spectrum vary in terms of tile characteristics, agent capabil-

ities, single agent vs. multi-agent, grid topology, and the underlying physics of the grid.

Alternatives along these dimensions are briefly described in the next section.

NASA TileWorld is historically related to the sliding tile domain developed by N.S. Sridha-

ran, C.F. Schmidt, and J.L. Bresina (reported in [Sridharan and Bresina, 1984]). In the Sum-

mer of 1989, Bresina sketched the initial design of the NASA TileWorld domain; this sketch

was refined by Bresina, Philips, Mark Drummond, and Mark Boddy to form the simulator

specifications. The implementation of the specifications was carried out by Philips. Around

this same time period, other related simulated domains were developed independently; e.g.,

the tileworld at SRI [Pollack and Ringuette, 1990] and Sutton's gridworld [Sutton, 1990].

Though similar in name, these three simulated domains are rather different in nature. For a

detailed discussion on the design motivation for TileWorld see [Philips et al., 1991].

In the rest of this manual, whenever "TileWorld" is mentioned, we are referring to the NASA

TileWorld simulator.

3

1.2 TileWorld Simulator

TileWorld is a two-dimensional grid of cellspopulated with tilesand a single agent. The

grid cellsin TileWorld are identifiedby their (x,y) absolute coordinates, where (0,0) is the

lower leftcell;above this corner cellis (0,i) and to the right is (I,0). The grid isoriented

such that North is up, South isdown, East isto the right,and West isto the left.A tileis

a polygon which has a name and fitsin a singlecell.

The agent fitsin a single cell and has four grippers which extend in the four compass

directions. The agent can perform the following effectoractions: use one of itsgrippers to

grasp a tilein an adjacent cell(in a compass direction),releasea tilethat itisgrasping, and

move in a compass directionto an adjacent cell.The agent can sense itslocation (inabsolute

coordinates), can determine whether it isgrasping a tilein a given direction,can sense the

contents of any cell,regardlessof distance to the cellor line-of-sight_obstructions', and can

request the current time from the TileWorld clock.

In addition to agent-executable actions, there is an external event over which the agent has

no control; this event corresponds to a _gust of wind ". Winds operate as vectors of force

originating from one of the four grid borders. A tilecan be _blown" by a gust of wind only

ifthe following two conditions hold: (i)the path between the tileand the wind's origin is

clear;and (ii)the cellinto which the tilewould be blown isempty.

No two objects can occupy the same place at the same time. All actions and events are

discrete.That is,at any moment, an object isentirely within one cell,never between cells.

Likewise, a gripper isnever partiallyextended nor partiallygrasping a tile.When the agent

isgrasping a tileor the wind isblowing a tile,that tileissaid to be unfree. When not being

grasped or blown, the tileis said to be _ree. Only free tilescan be grasped or blown.

The simulator has three types of commands: interaction,display, and customization. The

firsttype isfor agent control,and the lattertwo types are forexperiment control. Interaction

commands allow an agent controllerto sense the world state and operate the agent. Display

commands allow the researcher to have access to and modify presentation of the output

interfaces(graphical and ASCII). Customization commands allow the researcher to create a

TileWorld problem instance, to tune simulator parameters (e.g.,movement speed), to adjust

simulator dynamics (e.g.,behavior of the winds), and to introduce probabilisticerrorsin the

behavior of the agent's effectoractions (e.g.,to make the agent sometimes _veer" off course

or to sometimes have a gripper slipwhile attempting to grasp a tile).

The user can interact with the TileWorld system in three ways: by callingTileWorld func-

tions from Lisp's top level,from inside programs, and manually via mouse clicks in the

graphics window. Some TileWorld functions are not accessiblethrough the mouse.

A key feature of the simulator implementation isthat ituses the Franz Lisp multiprocessing

environment to run in realtime. In thisway, an agent control program and TileWorld can run

in the same Lisp image (without the user having to write a process scheduler). The dynamic,

4

real-time behavior of the simulator, along with the facilityto specify probabilisticeffector

errors,enables the construction of experiments that are more like "realworld" problems in

the sense that no two runs willbe identical.

1.3 Getting Started

This section decribes how to installTileWorld into your system, how to load the filesunder

Lisp, and how to start the simulator. This version of TileWorld runs on Sun3 or Sun4

(Sparcstation) computers with Allegro Common Lispi,Version 3.1.13and Version 4.0.2 Note:

the TileWorld system requires the Common Lisp loop macro. In Allegro Version 3 you must

call (require :loop) before you load or compile the system.

To get a copy of TileWorld, send mail to tileworld_ptolerny.arc.nasa.gov. We will arrange

to send a singlefileto you via some convienent route (tape, ftp,Sparc floppy, or Email).

1.3.1 Installation

After you have received the filecontaining the system, make a directory and place the file

there. The directory containing this filewillbe referred to as, .../tileworld/. The name

of the filewill be 'tw.tar.Z, shar'. Of course these need not be the actual names of the

directory or the filebut are used in the following discussion for ease of communication.

Change directory to ...Itileworldl and type the following at a UNIX s prompt:

sh tw.tar. Z. shar

The system will automatically unpack, uncompress, and untar itself. At this point,

tw.tar.Z, shar isno longer needed, but keep a copy around until TileWorld has been run

successfully.Check Appendix A on page 45 to make sure that allfilesare present.

In the file 'startup. llsp', there is a global variable called *tileworld-path*. This global

contains path information on the location of the TileWorld system. This must be set to

".../tileworld/" for the system to run.

1.3.2 Starting TileWorld

For purposes of speed, you may wish to compile allof the filesby loa_ling(within Lisp) the

file'compile.lisp' in the ...Itileworlcl/directory. Loading the file'startup.lisp', in

IAllegroCL isa registere_itrademarkof Franz,Inc.

2We attempted to make thesimulatoras generalas possibleand,therefore,more likelytorun on other

platforms.Ifyou modify TileWorldtomake itrun inotherLispsystems,we welcome your feedback.

aUNIX isa trademark ofAT&T InformationSystems.

.../tilevorld/, loads all of the files necessary for TileWorld to run correctly.

One command starts the system, tileworld. It takes two arguments, vidth and height,

and six &key arguments. The :display key for the tileworld command is used to deter-

mine the type of I/O used, graphics, or ASCII. If your Lisp has common-windows, use the

command (tilevorld vidth height :display :graphics), otherwise use (tileworld

vidth height :display :ascii). If you wish to use both the graphics interface and the

ASCII interface use the command (tileworld vidth height :display :both).

The following chapter presents a tutorial on using TileWorld starting with the commands

used by the agent controller and then the commands used by the experimenter, presenting

increasingly more advanced material on possible uses and customizations of the simulator.

To understand the details of using TileWorld, consult the Command Reference on page 23

and the Programmer's Notes on page 35.

6

Chapter 2

Tutorial

Sections in this chapter describe how to use various commands listed in the command refer-

ence in Chapter 3. Each section has a short tutorial followed by at least one dribbled output

of a Lisp run using the commands in that chapter. Some of the dribbled outputs start off

by loading a file to setup TileWorld in a particular configuration. These files are located in

a directory called .../t ileworld/dno and should be loaded as directed. Output that is in

boldface type, e.g., (release 'N), directs you to type that command into Lisp. A comment

such as ";;; See Figure 2.1" in the Lisp code indicates that the configuration depicted in the

figure will occur sometime after that command is executed. These figures contain snapshots

showing the exact appearance of the TileWorld graphics window.

If your Lisp does not support graphics, there are two important differences between what

is shown here and what TileWorld can display on your machine. First, when loading the

demo files, load the ASCII setup file instead of the graphics setup file. For instance, at the

top of page 10 is the command (load ".../tileworld/demo/setup-graph.lisp"). This

sets up the TileWorld with graphics. Substitute ascii for graph in the file name of the load

command and the TileWorld session will be configured for ASCII ouly. Second, although

each figure reference contains a description of the current state, you wiU not see this because

in ASCII mode, TileWorld will not display the grid automatically. To examine the contents

of TileWorld, use the command (ucii-display) (see section 2.2.2, page 12).

2.1 Interaction Commands

The interaction commands allow an agent controller to operate the agent and sense the world

state. These are intended to be the only commands that the agent controller uses to interact

with TileWorld.

2.1.1 Efl'ectors

The effector commands are grasp, release, and move-agent; they allow the agent controller

to manipulate the world. Each of these commands requires a direction argument.

The command move-agent attempts to move the agent one cell in a horizontal or vertical

compass direction. The agent and any tile it holds cannot move beyond the borders of

TileWorld, nor can they move so that they overlap with other tiles. The agent cannot move

a tile it is not grasping. This means that the agent cannot push against a tile to move it,

push a tile through a grasped tile (holding a tile in the direction of motion and pushing

against a second tile), nor "sweep" a tile with a grasped tile (holding a tile perpendicular

to the direction of motion and pushing against a second tile). In each of these examples the

command simply fails. Note that return status does not reflect failure.

The command grasp attempts to grasp a tile in a horizontal or vertical compass direction.

The agent has four grippers and, consequently, can grasp four tiles simultaneously. Because

a grasped tile is an extension of the agent, grasped tiles cannot be blown by the wind. Also,

the agent cannot grasp a tile that is being blown by the wind. It is not an error to command

a gripper to grasp at an empty cell.

The command release attempts to release a tile from one of the grippers in a compass

direction. It is not an error to issue a release command to a gripper that is not grasping a
tile. - - _....... =" _ : : - - : •

BecLuse-it s_rns unreasona$1e _n_d unreailstlc_fo/t_ae agent to-_x_O_ the results of its
actions-without active sensTmgl f_uctlo_-n calls to _t-_esee:l_'_rcommands always return _m-

mediately with a value of T. That is, when the agent is asked to (grasp ' S), the function

may return before the action is actually taken; consequently, the success of the action and
its duration is undetermined.

2.1.2 Sensors

The sensor commands allow the agent controllerto gain (discrete)information about Tile-

World. The agent has four sensors: (i)my-location, which determines the cellcoordinates in

which the agent islocated, (ii)attached, which determines ifsomething isbeing grasped in

a given direction,(iii)in, which examines the contents of any given cell,and (iv)worlcl-time,

which returns the time in seconds since TileWorld was created.

The command my-location returns the agent's location as a listof length 2 of absolute

coordinates on the TileWorld grid. The firstmember of the listis the X coordinate and the

second isthe Y coordinate. TileWorld's coordinate system originates in the lower-leftcorner

of the grid and continues in the positive direction to the right and up, exactly likethe first

quadrant of the Euclidean plane.

The command in takes, as arguments, an (z,Z/)pair describing a celllocation within the

8

TileWorld grid and returns the contents of that cell. If the cell is empty, NIL is returned. If

a tile is present, the number of sides and the name of that tile are returned as an association

list. Requests for the contents of cells outside the bounds of the grid return ' UNDEFINED.

The command attached takes a direction argument and returns T if the agent is grasping

a tile in that direction, and returns NIL otherwise. No other information is returned by this

command; it serves only to indicate whether or not the given manipulator is grasping a tile.

The command vorld-time takes as single argument. If the argument is T, this sensor

command returns the time in seconds since TileWorld was created. If the argument is NIL,

the sensor returns an integer that is equal to a constant multiplied by the time in seconds

since TileWorld was created. In most applications, the argument will be T. Two macros are

provided which convert between these different types of seconds, world-time-to-seconds

and seconds-t o-vorld-time.

All sensors have perfect accuracy and unlimited range. These commands return information

that is always correct at the instant in time they are called. However, there is no guarantee

on how these sensor requests are ordered with respect to effector actions or other TileWorld

changes like tiles being blown by wind. For instance,.suppose the agent is in the cell (0, 0),

there is a square tile in the cell to the north (0,1), you wish the agent to grasp that tile,

and to also determine if the grasp was successful: Your Lisp code might look like this:

(grasp 'N)

(if (not (attached 'N)) (error "Not Grasping!"))

Even though the Lisp command (grasp ' H) returns, that does not mean the effector action

it calls for has completed. When the agent is requested to sense whether (attached 'N) is

T, it cannot be known for certain if the command failed or it has not finished execution.

Sample Agent Interaction

The following page contains a sample run of the TileWorld system. A demo file is loaded

which builds a TileWorld, adds an agent and adds a tile. Agent effector and sensor commands

are also demonstrated. The agent moves the tile from the center of the grid to the northwest

corner and executes sensor actions during the move.

To follow the sample run, load the TileWorld startup file 'startup. lisp' as explained in sec-

tion 1.3.2 on page 5. Then load the file 'setup-graph. lisp' located in.../tilevorld/dao.

If you don't have Allegro Common Windows, use the file 'setup-ascii. lisp' and after the

figure references, use the command (ascii-display) to get an ASCII representation of the

TileWorld database. <user> is the Lisp command prompt. Looking closely at the text, you'll

notice that (in 1 1) does not appear on the same line as the command prompt <user>.

One of the mulitprocessing functions prints out the line "Loading body ... done." which

appears after the Lisp command interface is ready to accept input. This or any other slight

differences between the trace given here and what you obtain should produce no ill effects.

<user> (load ".../tileworld/demo/setup-graph.lisp'')

; Loading .../tileworld/demo/setup-graph.lisp.

Destroying wind

Tileworld created with agent and one 8-sided object named Elvis

T

<user>

Loading body of the agent.., pushing down to server.., done.

(inI I)

((SIDES 8) (NAME "Elvis"))

<user> (in 0 I)

NIL

<user> (my-location)

(0 0)

<user> (in 0 O) ;;; See Figure 2.1

AGENT

<user> (move-agent 'E)

©
T

<user> (grasp 'N)

Figure 2.1: Agent and Square

T

<user> (move-agent 'N)

T

<user> (move-agent 'W) ;;; See Figure 2.2

T

<user> (attached 'N)

T

<user> (release 'N)

T

Figure 2.2: Holding Square

10

2.2 Display Commands

To observe changes occuring in TileWorld while an experiment is being run, either use

the graphics display facility or periodically request an ASCII display. The graphics inter-

face provides a facility to get real-time display of events occuring in TileWorld; i.e., the

graphics display is automatically updated whenever a change takes place in TileWorld. The

ASCII interface produces an ASCII representation of TileWorld only when the command

asc±i-display is called and does not automatically print a new display every time a change

takes place in TileWorld.

2.2.1 Graphics Display

The graphics interface runs using common windows under Franz Allegro Common Lisp. It is

closely coupled with the TileWorld database and relies heavily on it for update information

and repaint requests to maintain screen integrity. There are a number of features that the

graphics interface provides.

The graphics facility displays the current state of TileWorld in its own window. This part of
the system executes efficiently to prevent I/O from "becoming a bottleneck. All of the agent

actions, agent movement, and grasping and releasing of tiles are portrayed in the graphics

window. Tiles are moved about in the display when winds blow them. Arrows describing

the wind scripts 1 are placed along the borders of the world. The color of these arrows is
inverted or normal depending on whether or not the the wind scripts are paused. There are

no functions to control the graphics display, all control is handled as side eifects of TileWorld

database manipulations.

Figure 2.3 is an example of a typical TileWorld. There are eight tiles defined, some with

names, and an agent grasping one of the tiles. There are two wind scripts defined, each

blowing from the east for four cells with periods of [5..20]. If the cell size is sufficiently large,

data describing each script arrow is displayed within the arrow graphic.

Note that in the figure, the wind script arrows are on the border of TileWorld. Typically,

only winds defined from the border are used, but this policy is not enforced by the code.

Should a wind script be located in the interior of the grid, an arrow will appear inside the

grid as well. The complete visual effect of this is undefined and unsupported. If you define
wind scripts in the interior, it is probably best to set the variable *display-scripts* to

NIL. The display window automatically resizes to a smaller window if there are no wind

scripts defined or resizes larger when wind scripts are defined. This resizing behavior can be

controlled via the global variable *auto-resizing*.

The graphics window is responsive to a number of button press events. If the middle button

of the mouse is pressed and held while the mouse cursor is within a cell, the location of that

1For information on wind scripts see section 2.3.2 on page 16

11

II]I_ W///]i

A

Figure 2.3: Typical TileWorld Grid

cell is displayed on the title bar of the graphics window. ALso, if the middle button is pressed

and held while the cursor is over a wind script arrow residing on the border, information

about that script is displayed in the title bar. Should multiple scripts be defined in the

arrow, the wind event that is earliest in the wind queue is selected (i.e. the next event to

be blown). If the button was depressed while the cursor was over the top script arrow on

the right hand side of Figure 2.3, the title bar would appear as (5 5) W 4 [5..20]. Other
mouse button interactions are described later.

2.2.2 ASCII Display

If the ASCII display is active (to activate, see t ileworld, section 3.3.1 on page 29), TileWorld
can be examined with the ascii-display command. The entire grid can be displayed, or

the display can be restricted to some subpart of the grid. The subpart can be specified either

_iSa square cen_red_rever theagent is]0catedor as a specific rectangular region of the

grid.

For flies, _the name and num_/er0f sides are displayed. The agent is indicated by AGENT; to

indicate that the agent is grasping a tile, "arrow heads _ are displayed-pointing inthe direction

of the grasped tile. For example, here is how ascii-display shows a 3x3 TileWorld with

the agent grasping a six sided tile named "ProDG':

12

+ ÷ ÷ ÷

I IProDGI I

I 1 6 1 I
+ +__ - __+ +

I IAGENTI I
I IAGENTI I
+ + + +

I I I I

I I I I
+ + + +

Information about the wind scripts is not displayed with thiscommand.

2.3 Customization Commands

This section describes the domain customization commands which allow the researcher to

create a TileWorld problem instance, to tune simulator parameters (e.g.,movement speed),

to adjust simulator dynamics (e.g.,behavior of the winds), and to introduce probabillstic

errors in the behavior of the agent's ef[ector actions (e.g.,to make the agent sometimes

veer" of course).

2.3.1 Static Configuration Creation

The command tilevorld creates a TileWorld grid of a specifiedsize.The grid can be of any

width and height greater than 0 and lessthan the memory and array limitationsof the Lisp

environment. Upon creation of the grid, a titleisassigned, the agent appearance is chosen,

and, most importantly, the display medium is selected. If Lisp contains a graphics facility

and the graphics option is selected,TileWorld creates a window for displaying changes to

the world in real-time. The titleand agent appearance have littlerelevance if the ASCII

option is selected.

Once TileWorld has been created, the commands add-object and add-agent are used to

place tilesand the agent onto the grid. add-obj ect takes as arguments the number of sides,

a name, and an xy-location. The resulting e_ect is the placement of a polygonal tilein

the specifiedcelland the value returned is the object structure pointing at that tile.This

structure should be saved ifthe user might later want to remove tileswithout destroying

the entire grid. This pointer is supplied solelyfor removal of objects by a designer and is

not intended to be available to code controllingthe agent (that would be cheating). The

function returns NIL should the location already be occupied.

add-agent places the agent at a given xy-location. Should the location be occupied, the

function returns NIL. None of the ei_ectoroperations and only one of the sensor operations

13

work until the agent is defined. It is still possible to operate TileWorld without an agent,
since tiles can be added and winds defined.

remove-object takes an object structure pointer and removes the tile from the grid. The

pointers to those objects are lost if they are not saved when the object was created. The

agent automatically releases a grasped tile when that tile is removed.

remove-agent will remove the agent from the TileWorld grid. The agent will automatically

release all grasped tiles before it disappears.

speed-of-agent controls how fast the agent can move about the world. The value of this

variable represents the number of grid cells that the agent can move in one second, e.g. 100

means that the agent can move 100 cells per second or equivalently it takes .01 seconds to

move one cell. There is an effective upper bound on the speed of the agent related to the

speed of the graphics, the speed of the machine, and the number of time slices the scheduler

gives to the database process. The default value for the speed is 10 cells per second or about

100 milliseconds per move, which, it turns out, is close to the average minimum limit on

human decisions/actions (about 200ms)[Kantowitz, 1974, pp. 1-39].

Sample Configuration Creation

Page 15 contains a sample configuration of the TileWorld system. A TileWorld is created

using the graphics display, an agent is added, and an object named Elvis is added.

To follow the sample run, it is assumed that you already have the TileWorld system up and

running. Refer to the previous section if you do not. If you are using a system that does

not support graphics, replace the ":graphics" in the tileworld command with ":ascii".

If you wish to simultaneously test what the graphics and ASCII look like (and if you have

graphics) replace the ":graphics" with ":both".

14

<user> (tileworld. 3 3 :display :graphics :title "Memphis World")

;;; See Figtue 2.4

T

<user> Destroying wind

Loading body of the agent.., pushing down to server.., done.

(add-agent 0 O)

T

<user> (add-object 1 1 8 "Elvis") ;;; See Figure 2.5

OBJ1

<user>

Figure 2.4: Empty Tileworld Figure 2.5: Agent and Tile added

15

2.3.2 User Defined Winds

Gusts and wind scripts can be created in TileWorld. A gust of wind is a single wind event

that can blow a tile in a straight line; it has a point of origin, a strength, and a direction.

Strength determines the number of cells a tile can be blown. If a/tee 2 tile is at the point of

origin when the wind is created, that tile is blown in the direction specified for as many grid
cells as the specified strength if the path is clear. If no free tile is present, then the gust dies.

A tile blown by a gust moves to the limit of that gust, unless it encounters another object.

This means that the tile will stop if it hits another tile, the agent, or a TileWorld border.

To create a gust of wind, use the command wind-blows-obj ect.

Wind scripts can also be created. A wind script is a gust of wind with a strength and a

direction which repeats periodically. Wind scripts generally originate on the border of the

world, s Strength determines the maximum number of cells a wind script can blow a free tile.

Wind scripts di_er from gusts in two important ways.

First, gusts occur only once, whereas, scripts occur repeatedly until paused or stopped. The

period of the wind script is an interval described by a lower bound and an upper bound in
seconds (real time). When a script is active, a time is randomly generated_that falls within

the interval (boundaries are included). The wind script then waits that many seconds and

blows once. This repeats until the scripts are paused or stopped.

Second, a gust affects a free tile only if it exists at the origin of that gust, whereas, a wind

script grabs the first free tile it encounters along the path described by its strength and

direction and blows it to the end of that path. If the first object encountered is not free, the
wind script stops for that iteration. The agent, a tile being grasped, or a moving tile in the

path of a wind script stops the script for one cycle. The strengtA, direction, and origin of a

gust describe a path starting at the or/g/n and ending strength number of cells in direction.

A path running along the entire bottom of an eight sided TileWorld is defined with its origin

at (0, 0), its direction as east, and its strength as seven.

To create a wind script use the command register-wind. It takes six arguments, two of

which are optional, register-wind must have the column and row location for the origin

of the wind, the direction of the wind, and the strength or distance that it blows. The last

two arguments describe lower and upper bounds on the period of the wind. Once registered,

the wind script processor takes control of the script and schedules it for gusting.

Sample wind creation - See next page.

:See definition of free, Section 1.2, page 4
3The point of origin of a scripted wind can be anywhere in the grid, but typically, the scripted winds

originate only on the borders. The _real world" analogy is that the winds appear to be created from outside
the bounds of the world. Also, the graphics are not very good at displaying wind scripts that originate from
the interior (see section 2.2.1, page 11 for more details).

I6

<user> (load " abp/tw/demo/wind-graph") ;;; See Figure 2.6

; Loading .../tileworld/demo/wind-graph.lisp.

Destroying wind

Tileworld created with agent and one 4-sided tile

T

<user>

Loading body of the agent.., pushing down to server...

(register-wind 2 1 'W 2 I 1)

done.

T

<user> (move-agent 'S) ;;; See Figure 2.7

T

<user> (move-agent 'N)

T

<user> (grasp 'W) Figure 2.7: Wind blows "Paper"

T

<user> (move-agent 'E)

T

<user> (release 'W) ;;; See Figure 2.8

T

<user> (move-agent 'S) ;;; See Figure 2.9

T

<user>
Figure 2.8: Agent blocks wind

Figure 2.6: Agent supports "Paper" Figure 2.9: Wind blows "Paper"

17

2.3.3 Creating Winds with the Mouse

Through use of the mouse, the user can create wind gusts within TileWorld. To create a

gust, push the left button down and release in a cell. The cursor should turn into a "+" and

the cell corresponding to the ending location of the wind will flash once (see figure 2.10 for

sample flash). Hove the cursor around within the window to select the cell towards which

the wind will blow. Push down on the left button again and a wind will be created that

blows from the cell of origin in the direction and with force as specified. This is exactly
as if the command wind-blows-obj ect was called. Note that gusts can only occur along
horizontal and vertical axes.

The user can also create wind scripts via the mouse. The process is very similar to wind

gust creation. Use the right mouse button to start the wind creation process by clicking it

within a border cell. Only border cells can be used to define wind scripts when using the
mouse. The cursor will change to an "X" and the row or column will invert, describing the

strength and direction of the script (see figure 2.11 for sample highlight). Push down on the

right button again, and a wind script will be created with the point of origin, direction, and

strength as specified, exactly like the command register-wind. The default values for the
period interval bounds are used.

Figure 2.10: Creation of a Gust Figure 2.11: Creation of a Script

18

2.3.4 Specifying Probabilistic Effector Errors

In order to model some of the uncertainty inherent in real world problems, TileWorld in-

cludes a facility to specify probabilistic errors in the operation of the effector commands. A

variety of options have been provided for simulated errors, but for any serious extensions,

including sensor accuracy, some programming is required. See section 4.3 on page 39 for
more information or contact us.

Each of the effectors has at least one failure mode known as its deviation-class which deter-

mines its general behavior. The three deviation classes are: (i) :grasp, (ii) :release, and

(iii) :move which refer to the gripper slipping, the release mechanism sticking, and moving

in the wrong direction, respectively.

Each effector function has a domain of arguments that it takes and each argument is a

list. One arguraent-liat for the function move-agent is ' (N). The argument-domain for

the function move-agent is ' ((N) (S) (g) (W)). Because the exact argument list can be

specified, a greater degree of control of the probabilistic errors is possible. For instance, the

agent can be made to llmp northwest half of the time it intends to move north by executing

the following two lisp functions:

1. (zero-deviation :move '(N))

2. (change-deviatlon :move '(N) :north 0.50)

3. (change-deviation :move _(N) :west 0.50)

Line 1 zeros out the probabilities for the deviations of (move-agent 'N). Actually, just after

the probabilities are zeroed, the function (move-agent 'N) has no effect. Line 2 sets up the

probabilities so that half the time (move-agent 'N) is called the agent will move north, the

other half it will do nothing. Line 3 sets up the probabilities so that now half of the time

the agent will move northwest, and the other half it will move just north. The :vest is a

misnomer, it should actually be :north-vest. At no time are any of the other directions of

movement affected by the these changes.

The probabilities of all deviations for an argument-list are stored as a cumulative distri-

bution function (CDF) in a slot in *probability-of-deviation*. A CDF is a way of

representing the sum total of the probabilities associated with a particular event. These

CDFs are compiled when a deviation is added with add-deviation or when it is changed

with change-deviation. For correct operation, these CDFs must never exceed 1.0.

Suppose you wish to change the current (move-agent ' e) command so that when the agent

moves east, it will move directly east 97% of the time, move east and limp north 2% of the

time and move east and limp south 1% of the time. Here, the deviation-class is :move and

the argument-lint is ' (E). The three deviations already exist and are called: :east, :north

and :south. Type the following to get the move-agent command to act this way:

19

1. (zero-deviation :move '(E))

2. (change-deviation :move '(E) :east 0.97)

3. (change-deviation :move '(E) :north 0.02)

4. (change-deviation :move '(E) :south 0.01)

After initializationthe system contains predefined deviations for each deriation-class.Each

class is initializedto work correctly 100% of the time (within the physics of TileWorld).

The command change-deviation is used to modify the probabilitiesof actions, while the

command add-deviation is used to change the actual actions.

For a complete listing of all the effector de_iation-cla.sses and their associated deviatio_zs

refer to figure 3.1 on page 32.

There axe three functions which set each effector deviation back to 100% correct behavior:

initialize-gripper-slip

initialize-move-errors

initialize-release-stuck

Sample Simulated Error

See next page.

20

<user> (load " abp/tw/demo/errors-graph") ;;; See Figure 2.12

; Loading /home/copernicus/abp/tw/demo/errors-graph.lisp.

Destroying wind

Tileworld created with agent and one 6-sided tile named eel.

T

<user>

Loading body of the agent...

(grasp 'E) ;;; See Figure 2.13

T

<user> (release 'e)

T

<user> (change-deviation :grasp '(E)

:normal 0.0)

pushing dovnto server.., done.

NIL

<user> (grasp 'E) ;;; See Figure 2.14

Figure 2.13: Agent grasps "eel"

T

<user> (move-agent 'S)

T

<user> (move-agent 'E) @
T

<user>

T

(grasp 'N) ;;; See Figure 2.15

Figure 2.14: East gripper fails

Figure 2.12: Agent west of "eel" Figure 2.15: North gripper works

21

22

Chapter 3

Command Reference

This section contains a categorized and alphabetized listing of all TileWorld functions, vari-

ables, and constants. These commands fall into three categories: interaction, display, and

customization. Within each category the commands are alphabetized and a short descr!ption

is given.

3.1 Interaction Commands

The interaction commands allow an agent controller to operate the agent and sense the world
state. These are intended to be the only Commands that the agent controller uses to interact

with TileWorld.

3.1.1 Effectors

These commands can be customized to exhibit probabilistic "errors"

page 19).

(see section 2.3.4,

grasp direction [Function]

grasp can grasp free 1 tiles in the compass direction specified. It is legal to try to grasp an

empty cell.

1See definition of free, Section 1.2, page 4

23 PRECEDING PAGE BLANK NOT FILMED

move-agent dire_o. [Function]

move-agent moves the agent one cell in the compass direction specified if all associated cells

are clear and within the bounds of TileWorld. For instance, if the agent is grasping a tile to

the west and the command (move-agent ' N) is issued, the cells directly north of the agent

and northwest of the agent must be clear for the move to work. The speed of the agent's move-

ment is regulated by the global variable, *speed-of-agent*. If a move-agent command is

issued before the last move-agent command has completed, the second command is dropped

without feedback. See section 3.3.1, page 29, for more details on *speed-of-agent*.

release direction [Function]

release releases a tile being grasped in the specified direction. It is legal to try to release

nothing.

3.1.2 Sensors

attached direction [Function]

attached tests if the agent is currently grasping a tile in the direction specified. It returns

either T or NIL.

Examples:

(attached 'N)

(my-loca_ion)
(in 1 3)

:_T

(1 2)

=_ ((SZDES 5) (NAME "Pengi"))

uorld-t ime seconds-p [F_nction]

world-time returns time in two forms, TileWorld seconds and real seconds. Real seconds are

the actual number of seconds that have passed since the TileWorld database was started.

TileWorld seconds are some multiple of the real world seconds. If seconds-p is T, actual

elapsed time is returned. If NIL, the time is returned in TileWorld seconds. It takes longer

to compute real world seconds, so in cases where speed is important you might want to use

TileWorld seconds instead. Values returned are guaranteed to never be decreasing. The

time is computed using Lisp's internal clock using the function, get-internal-real-time.

[Steele, 1984, Miscellaneous Features].

Two macros are provided for converting the two different types of times into one another.

They are world-time-to-seconds and seconds-to-world-time. Each will convert one

time into the other and can take any value as long as it is a number (float or integer).

Examples:

(world-_ime t)
(world-_ime nil)

(soconds-to-vorld-time 127.1)

(world-_ime-to-seconds (sQconds-to-gorld-time 127.1))

=:,127.1

=_ 131987

=_ 127100

=:,127.1

4_n co_uTr&n 7"0_0 [Function]

in returns information about the cell, (column, row). If an object is present, explicit infor-

mation on that object is returned. If no object is present, NIL is returned. If (column, row)

is outside the bounds of TileWorld, UNDEFINED is returned.

Examples:

(in 3 8) =_ ((SIDES S)

(in 5 2) =_&GENT

(in 1 0) =:,NIL

(in -i 4) _UNDEFINED

(NIME "Shakey"))

my-location [Function]

my-location returns the current location of the agent in TileWorld as a listof column and

row. Ifthe agent doesn't exist,IlL is returned.

Example:

(my-local:ion) =_ (3 2)

(in 3 2) _ AGENT

3.2 Display Commands

To observe changes occuring in TileWodd while an experiment is being run, either use

the graphics display facilityor periodicallyrequest an ASCII display. The graphics inter-

face provides a facilityto get real-time display of events occuring in TileWorld; i.e.,the

graphics display is autbmaticdly updated whenever a change takes place in TileWorld. The

ASCII interface produces an ASCII representation of TileWorld only when the command

ascii-display iscalledand does not automatically print a new display every time a change

takes place in TileWorld.

25

3.2.1 Graphics Display

These are the global variables used by the graphics process to determine visual attributes

of the display window. Use the variables *auto-resizin8* and *display-scripts* to

determine wind script presentation. The other variables along with keyword arguments to

the command t ileworld help determine the display window's appearance.

auto-resizing [Variable]

The value of *auto-resizing* determines whether or not the graphics display is automat-

ically resized when wind scripts are created or destroyed. If *auto-resizing* is T, then

the TileWorld window is resized whenever the number of wind scripts changes from none to

many or many to none. If NIL, no resizing occurs unless *display-scripts* is set to T, in

which case the window resizes larger once.

border [Va_able]

The value of *border* determines the width in pixels of the border around the grid.

display-scripts [Variable]

The value of *display-scripts* determines whether or not the wind scripts are displayed

in the graphics window. A value of T indicates that they are displayed, a value of NIL

indicates not.

margin-normal [Variable]

The value of *margin-normal* determines the margin size in pixels when wind scripts are

not being displayed.

token-ratio [Variable]

The value of *token-ratio* determines the size of the tiles as a fraction of *cell-size*.

It defaults to 0.75 or 75%.

26

3.2.2 ASCII Display

ascii-displaylkey :left :bottom :width :height :agent-centered [Function]

Ifthe ASCII display isactive(to activate,see tilevorld, thissection),TileWorld can be ex-

amined with thiscommand. Ifnone of the key arguments, :left, :bottom, :vidth, :height

or :agent-centered, are specified,then a representation of the entiregrid is displayed. By

specifying the key arguments, smaller areas of the grid can be viewed. If :agent-centered

isspecified(ittakes a number), the other arguments are ignored and the grid displayed will

be an agent centered view with a box twice the sizeof the number given.

Here ishow ascii-display shows a 3x3 TileWorld with the agent grasping a six sided tile

named "ProDG':

+ + + +

I IProDGI I

I I s I I
+ +_---_+ ÷

I IAaztrrl I
I IAGENTI I

+ ÷ + +

I I I I
I I I I
÷ ÷ ÷ ÷

This example could be displayedwithanyofthefoHowing:

(ascii-display)

(ascii-display :agent-centered I)

(ascii-display :left 0 :bottom 0 :width 3 :height 3)

3.3 Customization Commands

This section describes,the domain customization commands which allow the researcher to

create a TileWorld problem instance, to tune simulator parameters (e.g.,movement speed),

to adjust simulator dynamics (e.g.,behavior of the winds), and to introduce probabilistic

errors in the behavior of the agent's effector actions (e.g.,to make the agent sometimes

"veer" off course).

27

3.3.1 Static Configuration Construction

add-agent column row &key :stream :time-out [Function]

Adds an agent to TileWorld at the specifiedlocation, (column, row), if the location is an

unoccupied cell within the bounds of TileWorld. The function returns either T or NIL,

denoting success or failureto place the agent. Should add-agent failto place the agent,

a message is printed to :stream. Due to the multiprocessing environment, a :tJ.me-out is

necessary to ensure proper communication. This defaults to 10 seconds.

add-object column row sides name &key :immovable :stream :time-out [Function]

Adds a tileto the database at (column, row) ifthat location is an unoccupied cellwithin

the bounds of TileWorld. sides is normally an integer greater than two but can be any

Lisp object including listsand structures. If third is an integer greater than two, it willbe

displayed via the graphics as an object with that number of sides,otherwise, itwillappear

as a solid block occupying the entiregrid cell.name can be any Lisp object including lists

and structures. If sides or name is a listor a structure, then data can be stored with the

object and isavailable through the sensors. See section 3.1.2,page 25 for examples on how

to access this information. :immovable determines whether or not the agent or winds can

move this object. The value defaults to NIL.

This command returns a structure of type object if the tilewas successfully added. It

returns NIL and prints a message to :stream ifthe command failsor ifit timed out. The

default for :time--out is 10 seconds.

clear-tileworld [Function]

Clears allobjects from the TileWorld database including the agent, removes allwind-scripts,

resetsallcounters, and resets the time clock to zero. However, the database is not actually

removed, the graphics window and ASCII display buffer are not recreated (although they

are updated). This command is useful because the startup time in initializingall of the

database and display buffers can be avoided. This command finds its greatest use when

running multiple tests on the same problem: restarts costs only the time in repopulating

TileWorld.

remove-agent [Function]

Removes the agent from TileWorld. The agent releasesallheld tilesbefore itisremoved. If

the agent does not exist when remove-agent iscalled,a warning message isprinted.

28

remove-object o_ect [Function]

Removes a tile from TileWorld. object must be a structure of type object and refer to the

tile in question. This structure is returned by the command add-obj ect. See add-obj ect,

this section, for more information.

reset-world-time kept ional seconds [Function]

This resets the TileWorld clock back to zero or to the value of seconds should that be

supplied. This command is useful to reset the dock just before an experiment is run.

speed-of-agent [Variable]

The value of *speed-of-agent* determines the rate at which the agent can move through

TileWorld. The number represents the number of cells per second. The default for this

variable is 10. This means that in one second the agent can move 10 cells, or that the agent

moves one cell in 1/10 of a second. This var_aSle may be adjusted at any time.

tilevorld co_mnsrows kkey :display:agent-default :title

:cell-size :agent-size :grid-lines

[Function]

This creates a TileWorld of size column,, x rows. The :title of TileWorld defaults to

"Tile World". :display must be one of the following: :graphics, :ascii or :both. If it is

:graphics, then output is handled by the graphics process only. If it is :ascii, then the

TileWorld state can onlybe accessed with the ASCII interface via ascii-display. If it is

:both, then both graphics and ASCII displays will work. :display defaults to :graphics.

: agent-default can be T, NIL, or a filename. : agent-default defaults to T which indicates

that the graphics package should draw a circle to represent the agent. NIL indicates that the

user should be queried for the proper bitmap. If a filename is supplied, it must be a Common

Lisp pathname [Steele, 1984, File System Interface] and must point to an X Windows bitmap

file describing the agent's body. See Appendix A, page 45 for more details on the agent's

body bitmap.

:t itle appears in the title bar of the graphics window when the graphics process is enabled.

:cell-size determines the pixel size of a TileWorld cell in the graphics window. This

defaults to the previous number given or 66 the first time called. :agent-size determines

the agent's size in the graphics window. This value can either be a number no greater

than half that of i cell-size, or can be the keyword argument :half and it defaults to the

previous value given or to 29 the first time called. :grid-lines defaults to T and determines

if the grid lines forming the cell boundaries within TileWorld axe displayed.

29

3.3.2 User Defined Winds

pause-wind &key :stream [Function]

This function temporarily halts all wind scripts. Winds registered while the scripts are

paused will likewise be paused. The global variable, *wind-script-active*, holds the

current status of the wind scripts. : stream is the output stream for information printed by

this command. NIL prevents the output from being displayed, resume-wind resumes the

scripts once paused.

register-wind column row direction strength

&opt ional lower-bound upper-bound

[Function]

register-wind creates a wind script originating at the cell, (column, row), blowing in

direction, direction can be one of the four compass directions: I/, S, E, or W. strength

is an integer describing how many cells a tile can be blown. The interval described by

[Iower-bound..upper-boun_ is the period for how:often the winds are blown. This defaults

to [5..20]. These winds normally blow from the edges of TileWorld towards the interior,

although the system allows a wind to originate anywhere within TileWorld and move in any

direction.

Examples:

(registor-wlnd i 0 'N 5)

(register-.ind 0 8 _'E 6 7)

(register-wind 8 5 'W 2 12 31)

(registor-.ind 3 8 'S I 17 17)

Origin (1,0), blows north 5 cells, period of [5..20]

Origin (0,8), blows east S cells, period of [7..20]

origin (8,5), blows West 2 calls, period of [i2._:31]

Origin (3,8), blows south 1 cell, period of [17..17]

resume-wind &key :stream [Function]

resume-wind restarts paused wind scripts. Because of the way winds are stored, a lot of

wind scripts back up during the time they are paused. When the scripts are resumed, these

winds will all release at the same time. See pause-wind for more details.

stop-wind &key :sirearn [Function]

This command destroys all wind scripts. The wind scripts are removed and the wind script

status is reset to active, even though-there will be no winds to be blown.

3O

wind-blows-obj ect column row direction strength [Function]

This function creates a gust of wind, a single wind event that causes a wind to blow in the

cell, (column, row), in the direction given. Should there be a tile present in the cell and that

tile is free 2, it is blown for as many ceils as the strength supplied. If there is no tile in the

cell, the wind dies (and does not continue on to possibly blow other tiles). In other words,

this commands produces a wind that originates in a cell and exhausts itself immediately.

speed-of-tile [Variable]

The value of *speed-of-tile* determines the rate at which tiles are blown by the wind.

The number represents the number of cells per second. The default value for this variable is

10. This means that in one second the wind can blow a tile 10 cells, or that a tile is blown

through one cell in 1/10 of a second. This variable may be adjusted at any time.

wind-script-active [Variable]

rind-script-active is a list of length one whose car determines the activity status of the

wind scripts. If the car is T, the wind scripts are cycling and blowing. If NIL, they are paused.

Only pause-wind and resume-wind should be used to change *wind-scrlpt-active* be-

cause these functions perform important side effects.

3.3.3 Probabilistic Efl'ector Errors

add-deviation deviation-class argument-list deviation probability functions [Function]

add-deviation takes a deviation-class, an argument-list, a deviation, a probabilit_l for that

deviation, and a list of .hmetions to execute if the random number generator selects this

deviation. Each effector function eventually bottoms out in one of the HELP- functions,

which is then used by the probabilistic failure mechanism to control the effector. These

HELP- functi0ns are the actual Lisp Code that _t]_e effectors. See section 4'3 on page 39

for more information on HELP- functions.

Example:

(add-dQviatlon :release '(S) :normal 0.9 '((HELP-RELEASE S)))

When the effector action, (release 'S), is called, it calls the function, (HELP-RELEASE),

90% of the time. The other 10% of the time it defaults to nothing, assuming that no other

deviations have been specified.

2See definition of fr_e, Section 1.2, page 4

31

change-deviation deviation-class argument-list deviation probability [Function]

change-deviation takes a deviation-class, an argument-list, a deviation, and changes its

probability to be probability, change-deviation assumes that the deviation has already

been added by add-deviation.

Example:

(change-deviation :release '(E) :normal 0.5)

When the effector action, (release 'E), is called, it will now work 50% of the time, instead

of its previously set value. It is an error to make a change to a deviation that causes the

total probability for the deviation-class and argument-list to exceed 1.0. Refer to figure 3.1

on page 32 for all the classes and deviations.

:MOVE and its associated deviations

(move-agent ' N) :north Moves the agent true north

:east Moves the agent north and east

:west Moves the agent north and west

(move-agent 'S) :south Moves the agent true south

:east Moves the agent south and east

:vest Moves the agent south and west

(move-agent ' E) : east Moves the agent true east

:north Moves the agent east and north

:south Moves the agent east and south

(move-agent ' W) :west Moves the agent true west

:north Moves the agent west and north

:south Moves the agent west and south

:GRASP and its associated deviations

(_rasp 'N) :normal Grasps an object to the north

(grasp 'S) :noraal Grasps an object to the south

(l_rasp 'E) :normal Grasps an object to the east

(grasp 'W) :normal Grasps an object to the west

:RELEASE and its associated deviations

(release 'N) :normal

(release 'S) :normal

Releases the gripper to the north

Releases the gripper to the south

(release 'E) :normal Releases the gripper to the east

(release 'W) :normal Releases the gripper to the west

Figure 3.1: Deviation Classes and their deviations

32

init ialize-deviation deviation-class ar_ment-doraain [Function]

initialize-deviation initializes the discrete cumulative distribution functions (CDFs) for

the particular effector deviation-class and its argument-domain. It enters the deviation-class

into the global, *probability-of-deviation*, or zeros all probabilities if the deviation-

class is already present. The argument-domain is used to determine an effector's actions

depending upon the argument-list given.

Example:

(initiallze-devia_ion :grasp '((N)(S) (E) (N)))

This initializesthe :grasp deviation and setsup the domain of symbols grasp can receive.

That is,it can receive four sets of arguments, each set isof length one and refersto one of

the compass directions.

init ialize-gripper-slip [F_nction]

inlt ialize-gripper-slip resetsthe effectoraction'grasp. This function iscalledwhen the

system isfirststarted. Itonly needs to be calledwhen the probabilitieshave been modified.

initialize-move-errors [F_nction]

initialize-move-errors resets the elfector action move-agent. This function is called

when the system isfirststarted. Itonly needs to be calledwhen the probabilitieshave been

modified.

initialize-release-stuck [Functio_

initialize-release-stuckresetstheeffectoraction release. This functioniscalled when

the system isftt_t started. It only needs to be cSled when the probabifitieshave been

modified.

zero-deviation deviation-class argument-list [Function]

zero-deviation zeros the particular argument-list of a deviation-class. Once a deviation

has been set,itis best to zero itbefore changing itsprobability,so that there isno chance

of causing the CDF to exceed 1.0.

Example: (zero-deviation :grasp ' (N))

This zeros the CDF for the effectoraction, (grasp 'N). Executing (grasp 'N) willhave no

effect,until change-deviation isused to adjust the probabilities.

33

34

Chapter 4

Programmer's Notes

We created TileWorld with a certain research agenda in mind which may or may not suit

your needs. If it does, that's excellent! If not, you should be able to easily modify TileWorld

or use it as a base for other simulated environments. This chapter provides information,

direction, and pointers to the code to ease modifications. If most of the system suits your

needs, but there are some tweaks that would make it more useful, by all means, make them.

For help, send email to Andy Philips at address tileworld_ptolemy.arc.nasa.gov.

4.1 Multiprocessing

Every reference to multiprocessing commands uses one of the macros defined in the file

macros, lisp. Therefore, switching to other Lisp dialects with multiprocessing is simpli-

fied. In addition we have tried to follow well-founded concepts for concurrent programming,

like the macros 'critical-section' and 'cobegin' [Ben-Ari, 1982]. Queues are used to

transport data between processes.

4.1.1 Queues

Queues and Pdority Queues are sound techniques for two or more concurrent processes

to communicate. They are used by the concurrent processes in the TileWorld system to

ensure database and screen integrity.The MultiProcessing Queue structure in queues, lisp

is designed to allow fast queue updates, priority queue ordering, and prevention of data

corruption.

Because queues are the only way that two concurrent TileWorld processes can communicate,

each queue has a lock which is used to maintain queue integrity.These locks provide the

necessary security.

35 PRECEDING PAGE BLANK NOT FILMED

There is a head pointer and a tail pointer to each queue. The head points to the next item to

be dequeued and the tail to the item most recently entered. Should the queue be a priority

queue, the tail pointer is unused.

If the queue is a priority queue, it has an accessor function which takes as an argument a

member of the queue and returns a number representing that item's priority. The lower the

number for the priority, the "earlier" it will be ordered in the queue. This type of ordering

makes sense for priority queues that are ordered by time. The accessor function is compiled

when the queue is initialized.

Here is a list of globals containing queues used by the system:

Global

database-queue

graphics-queue

ascii-queue

display-queue

script -queue

wind-queue

Type
FIFO

FIFO

FIFO

Priority

Priority

Description

For sending commands to the database process.

For sending commands to the graphics display process.

For sending commands to the ASCII display process.

Set to either *ascii-queue* or *graphics-queue*.

For maintaining which wind script executes next.

For maintaining which tile blows next.

4.1.2 Processes

The system is divided into a number of concurrent processes, each of which is responsible

for certain behaviors. A database process keeps track of the agent, tiles, the grid, time,

effectors, and sensors and upholds the physics. Two display processes, ASCII and graphics,

keep track of data output. A gust process blows all tiles. A script process maintains all wind

scripts.

Any process may enter data into any queue, but only one process is allowed to remove data

from a particular queue. This restriction is enforced by the programmer, not by the system.

There are five queues, so there are five processes that read those queues and five global

variables to contain them.

Globnl

database-process

graphics-process

ascii-process

script-process

wind-process

Actual LispFunction

database-process

graphics-process

ascii-process

script-process

wind-process

Associated Queue

database-queue

graphics-queue

ascii-queue

script-queue

wind-queue

The database process constructs and maintains the TileWorld database. These functions

manage TileWorld in terms of creating, adding, removing, and moving tiles and the agent,

but do not direct the autonomous movement of tiles via winds (handled by the wind process).

Although it is not necessary to use the graphics facility with the database, they were written

to be used together.

36

The two display processes, ASCII and graphics, maintain a correct world map and rely upon

receipt of update information from other processes, mostly the database. If the graphics

window is being used, then graphics-process will be running. If ASCII is being used,

then ascii-process will be running. Both processes run when both display formats are

being used, with the graphics-process passing information to the ascii-process when

the global variable, *graphics-pass*, is set to T.

The script process handles the wind scripts. The process will sleep for as many seconds

between now and the time of the highest priority script (top of the priority queue). If a

higher priority script is inserted onto the priority queue (sooner in time), the script process

restarts its sleep cycle based on the new script. If it finishes its sleep cycle without any

higher priority scripts being inserted, the top script will be considered active and be made to

blow. Once a script is activated, its next time of activation is calculated, and it is reinserted

into the queue. Any scripts on the queue that are overdue, i.e. scripts whose times are in

the past, will be taken care of immediately.

The wind process is very similar to the script process. It handles its priority queue exactly

the same except that it does not reinsert tile movement events until there is confirmation

from the database that the tile moved succesfully. Note, it /8 possible to determine the

effects of database changes even though the agent's effectors do not return success or failure.

The wind process is considered part of the omniscient universe and can "know" if actions

succeed, whereas the agent may not have access to such "global" knowledge.

4.1.3 Eifectors in Multiprocessing

When an effector action is called, three things happen. First, the effector action is queued

onto the database input queue as an external function. The database calls this function

when it is dequeued, allowing that function to manipulate the TileWorld database alone;

that is, the effector function will be acting as if it was a database process function. Second,

the simulated error code is called, to determine the exact outcome of the effector action.

Finally, the actual function which executes the effector action is run.

The effectors may be as simple or as complex as your needs require. It is best if the functions

operate quickly. They are called as extensions of the TileWorld database, and if they take

a long time to execute, they will tie up the database and keep other database events from

executing in a timely fashion (e.g. wind blown tiles, redraws).

4.1.4 Motion, Asynchronous Behavior, and Time

If two tiles or the agent and a tile are moving towards the same cell, the first one into that

cell will occupy it and, the other will be stopped. If a tile is moving past the agent, the agent

will not be able to grasp that tile. Likewise, if the agent attempts to grasp a tile that is

suddenly blown by a wind, the grasp action will fail.

3T

To synchronize system operations like winds, gusts, agent speed, and tile speed, the Lisp

internal timer is used (See section 3.1.2, page 24, world-time). To control speed the agent

and tiles are marked with the time that they were last moved and are prevented from

moving until the clock progresses past their time marks. The TileWorld clock keeps time

by lazy evaluation. That is, the function doesn't actually keep track of clock ticks, rather it

calculates the passage of time since the last time request and returns the new time. This is

completely reasonable, except that because of the functions that it uses in Lisp this (very

rarely) may cause a slight weirdness in time keeping. The timer uses the Lisp function

get-internal-real-time. The number that this function returns cycles, so that at some

point it goes from a big positive number to a little positive number. I imagine the math isn't

that complex to compute time elapsed, but rather than make the calculations general, when

between time requests the Lisp clock cycles in this manner, the TileWorld clock assumes

ZERO TIME has passed. If the TileWorld clock is sampled often, this glitch will hardly be

noticed. And with winds blowing, the Clock is sampled enough _d, therefore, there is no
problem.

4.2 Allegro CL Graphics Commands

Here is a list of the Common Windows functions used in the graphics system:

bitblt

clear-rectangle-xy

clear-windov-stream

clear

control-mouse-cursor£move-events

drav-rectangle-xy

drav-polygon-xy

draw-filled-polygon-xy

draw-image-xy

draw-lines

draw-line-xy

font-baseline

font-character-height

font-string-width

get-mouse-state

make-bitmap-stream

make-position

make-window-stream

modify-windov-stream-method

read-bitmap

vindow- stre_-ope_a_i0n

window-streW=mouse-cursor

vindov-stream-mouse-cursor-move

windov-stream-title

window-s_ream-x-position

window-stream-y-position

From the Allegro CL Common Windows Manual [Franz, Inc.,1989, page 3-i]:I

The windo_o-stream isthe basic data structure of Common Windows. The window

you see on the screen isthe physical displayof a wincl0wlstrearnlWindowlstreams

1reprinted with the permission of Franz Lisp, Inc.

38

are Common Lisp structures,and, as such, have slotswhich hold information and,

in many cases,can be used to change it. [sic]

An active-region is an area of a window separately sensitive to the mouse. A

mouse event when the cursor isin an active-regioniscaught by the active-region,

not the parent window. Also when the cursor enters the active-region,a cursor

in event is generated for the active-region.... The parent of an active-region

must be in a window-stream An active-regionwith more than one cellis also

called an active-grid.... Active-regions can be activated and deactivated just

likewindow streams.

[make-position] returns a new position,whose coordinates are specifiedby the

values of the :x and :y arguments, which are integers are defaulting to 0. In

Common Windows, positions are used to specify the locations of objects, for

example the mouse cursor, windows, and the endpoints of lines.

4.3 Adding New Probabilistic Effector Errors

When an effector is called, it has a helping function which actually performs the work

of modifying the database. Neither you nor the agent should call these helping functions

directly;they are only to be calledvia the simlated error facility.Each ef_ectorhas at least

one helping function, and allhelping functions begin with 'HELP-' by convention.

For simulated error purposes, the helping function for grasp is HELP-GRASP. The helping

functions for move-agent are HELP-MOVE-AGENT and HELP-MOVE-AGENT-DIAGONALLY. The

helping function for release isHELP-RELEASE.

Let's say you want to initializethe grasp command to work as discussed earlierin thisman-

ual. The deviation-classis :grasp. The argument-domain is '((N) (S) (E) (W)). One

particular argument-list is '(N). The probabilityfor deviation :normal for this argument-list

might be 1.0. The setoffunctions to execute for thisdeviationmight be '((HELP-GRASP N)).

Thus, to set up the grasp command, you might do the following:

(initialize-deviation :grasp '((N) (S) (E) (W)))

(add-deviation :grasp '(_) :normal 1.0 '((help-grasp N)))

(add-deviation :grasp '(S) :normal 1.0 '((help-grasp S)))

(add-deviaZlon :grasp '(E) :normal 1.0 '((help-grasp E)))

(add-devlation :grasp '(W) :normal 1.0 '((help-grasp W)))

This establishes an error-freegrasping action in allcompass directions.

For a second example, suppose you wish to modify the current (move-agent 'e) command

so that when the agent moves east, it will move directly east 97% of the time, move east

and limp north 2% of the time and move east and limp south i% of the time. Here, the

39

deviation-class is :move and the argument-list is ' (E). Create three new deviations called:

:east, :north, and :south (these are arbitrary names). Then type the following to get the

move-agent command to act this way:

(zero-deviation :move '(E))

(add-deviation :move '(E) :eas_ 0.97 '((HELP-MOVE-AGENT E)))

(add-deviation :move '(E) :nor%h 0.02 '((HELP-MOVE-AGENT-DIAGONALLY E N)))

(add-deviation :move _(E) :south 0.01 '((HELP-MOVE-AGENT-DIAGONALLY E S)))

This ezaraple can be done more easily with change-deviation, see Section _2.3.4, page i9.

4.4 How the Wind Gusts and Scripts Are Done

Functional control for definition of wind gusts is handled via the window stream with a

left-button-down handler. The firstleft-button-down event in the window stream has a

number of effects:(i)startsthe wind gust definitionprocess, (ii)sets the point of origin for

the wind gust, (iii)changes the mouse cursor to a.plus sign, and (iv) activates the mouse-

cursor-in-handler method. This method tracks the cursor as it moves throughout the grid

cells(equivalent to the TileWorld cells)and keeps track of proper direction and force for the

wind gust. When the second leftbutton down event occurs, the database, ifgiven a legal

wind direction and force,will cause a wind to blow, and then reset the window properties,

preparing itto accept a new wind definitionfrom the user.

A similar procedure and right-button-down handler are used for wind scripts.

4O

Acknowledgements

Thanks to Mark Drummond, Rich Levinson, Smadar Kedar, and Keith Swanson for testing
the simulator code. Thanks to Martha DelAlto, Mark Drummond, Kate McKusick, Andrew

Philpot, and Keith Swanson for comments on previous versions of this manual.

This software has been developed within the Artificial Intelligence Research Branch

of the NASA Ames Research Center and is distributed for research purposes only.

Users of this software must be given a copy directly from NASA Ames and agree that

the software will not be further distributed. Third party distribution is explicitly

disallowed. While we will attempt to respond to requests for help and suggestions for

extension, this software is distributed as is and should be considered unsupported.

This software has been developed with joint funding from NASA and DARPA.
NASA funding for the contract is in the AI Research Program under RTOP 590-

12-33, and DARPA co-funding is provided by the Information Sciences Technology

O_ce under DARPA Order 7382. Software development has been carried out by

Sterling Software under contract to the NASA Ames Research Center.

41

42

Bibliography

[Ben-Ari, 1982] Ben-Ari, M. 1982. Principles o.f Concurrent Programming. Englewood Cliffs,

N J: Prentice-Hall International.

[Franz, Inc., 1989] Franz, Incorporated. 1989. The Allegro Common Windows Manual.

Berkeley, CA: Franz, Incorporated.

[Kantowitz, 1974] Kantowitz, B.H. (Ed.). 1974. Human Information Processing: Tutorials

in Performance and Cognition. New York, NY: Lawrence Erlbaum.

[Philips et al., 1991] Philips, Andrew B., Swanson, Keith J., Drummond, Mark E., and

Bresina, John L. 1991. The NASA Tile World Simulator: Instantiating key domain at-

tributes while discarding irrelevant semantic baggage (NASA Ames Technical Report

TR-FIA-91-04). Moffett Field, CA: NASA Ames Research Center, Code FIA.

[Pollack and Ringuette, 1990] Pollack, M.E., and Ringuette, M. 1990. Introducing the Tile-

world: Experimentally Evaluating Agent Architectures. Proceedings o/the Eighth Na-

tional Conference on Artificial Intelligence (pp. 183-189), Menlo Park, CA: AAAI Press.

[Sridharan and Bresina, 1984] Sridharan, N.S., and Bresina, J.L. 1984. Exploration of Prob-

lem Reformulation and Strategy Acquisition - A Proposal (Rutgers Technical Report

RU-LCSR-TR-53; RU-CBM-TR-137). New Brunswick, N J: Rutgers University, Depart-

ment of Computer Science.

[Steele, 1984] Steele, Guy. 1984. Common Lisp: The Language. America: Digital Press.

[Sutton, 1990] Sutton, Richard S. 1990. Integrated Architectures for Learning, Planning, and

Reacting Based on Approximating Dynmaic Programming. Proceedings o/the Seventh

International Conference on Machine Learning (pp. 216-224), San Mateo, CA: Morgan
Kaufrnann Publishers.

PRECEDING PAGE BLANK NOT FILMED

43

44

Appendix A

Files in the System

...Itileworld/

File

ascii

compile

database

effectors

graphics-agent

graphics-wind

graphics

macros

processes

queues

sensors

simulated-errors

startup

tileworld-database

time

wind-blow

wind-script

Functions...

to display TileWorld in ASCII text format.

to compile the files in the TileWorld system.

to construct and maintain the TileWorld database.

for the agent to take actions in TileWorld.

to maintain the display states of the agent.

to create winds via the mouse and display them.

that display TileWorld from Allegro using common windows.

to abstract the multiprocessing code.

to initialize all TileWorld processes.

to control multiprocess communication via queues.

for the agent to gain information about TileWorld.

to introduce alternate behavior in the agent's ef[ectors.

to load the appropriate files in the TileWorld system.

to set up TileWorld globals and load files.

to run the TileWorld timer.

to blow a tile about TileWorld.

to create wind scripts for blowing tiles.

.../tileworld/image/

Here reside the files ttiat are used to represent the body of the agent in the TileWorld do-

main. To create an agent body use the Xll facility 'bitmap'. Read the UNIX man pages

for a full explanation of this command. Bitmaps of the agent's body should be 29x29 pixels

unless the graphics constant *agent-size* is changed. Bitmaps larger than *agent-size*

45 PRECE'_ING P.aC_ BLANI(NOT FILMED

will only be partially used and smaller bitmaps may not be centered correctly. TileWorld

only looks for agent bitmap filenames that end in ".bit". All other files will be ignored.

File

README

eye.bit

nasa.bit

standard.bit

Description

Description of directory.

Agent with an eye peering out from the interior.

Agent with a NASA logo in the interior.

Standard agent bitmap for the graphics display.

... Itileworld/Doc/

File

Manual.tex

Manual.dvi

Manual.ps

PS/fig?.ps

script?.tex

Description

User's Guide in the latex format.

User's Guide in the DVI format (TileWorld images not included).

User's Guide in PostScript format (!mages included).

PostScript figures for the Manual.

Tutorial Scripts derived from dribbled Lisp output.

46

Appendix B

Known Bugs

Despite our best efforts to prevent them, there are still some bugs in the system. Please

report any new bugs to us. We cannot promise any support, but we will make an effort.

• The current package isswitched to :cw when TileWorld isloaded. This may cause some

symbol conflictswith the :user package. Solution: clobber those symbols (unintern

option) ifan error occurs.

• For Allegro Version 3 Lisp users, check to see if the LOOP macro is properly loaded.

Contact me (Andy Philips) if you need a copy of the macro. It is also available from

a number of FTP sites around the country.

47

48

Index

• speed-of-agent*, 29

• speed-of-tile*, 31

• eind- script-act ive*, 31

add-agent, 28

add-deviation, 31

add-obj ect, 28

ascii-display, 27

attached, 24

change-deviation, 32

clear-tileworld, 28

8rasp, 23

init ialize-Eripper-slip, 33

init ialize-deviation, 33

init ialize-move-errors, 33

init ialize-release-stuck, 33

in, 25

move-aEent ,24

my-location, 25

pause-wind, 30

resist er-.ind ,30

release, 24

remove-agent, 28

reset-world-time, 29

resume-wind, 30

stop-wind, 30

tileworld, 29

vind-blows-obj ect, 31

world-time, 24

zero-deviation, 33

49

F_CEDii';'G PA_ BLANK NOT FiLME3

Errata Sheet for NASA TileWorld (Version 2)

The following sections describe changes made to the TileWorld program and errors found

in the original manual. These reflect updates to the TileWorld program for Version 2.1.

Errors in TileWorld 2.0 Manual

• On page 7, paragraph 2 the text reading "... the top of page 9 is the ..." should read

"... the top of page 10 is the ...'.

• On page 43 in the bibliography on the fourth entry, [Philips et al., 1991], the technical

report number is incorrect, it should be TR-FIA-91-04.

Changes to existing features in TileWorld 2.1

• There was a problem with the display of wind scripts in the graphics window. The

scripts would not always be displayed when first created by the mouse and were never

first displayed when created with the command register-wind. Both of these prob-

lems have been fixed.

• On page 25 under the Section 3.2.1 Graphics Display, the text should now read:

These are the global variables used by the graphics process to determine

visual attributes of the display window. Use the variables *auto-resizing*

and *display-scripts* to determine wind script presentation. The other

variables along with keyword arguments to the command tileworld help

determine the display window's appearance.

• Under the same section, the following constants should be removed from the documen-

tation because they should now only be changed by calls to the tileworld command:

agent-size, *cell-size*, and *script-arrow*

The agent's size and the grid cell size can now be controlled through keyword argu-

ment's to the tileworld command. The script arrow's size is linked to the cell size (a

few pixels smaller) and is computed when the graphics window is constructed. Modify-

ing these variables during a session has undetermined effects. It should be noted that

under a certain size, script arrows will no longer display strength and period numbers

due to lack of room. Information can still be obtained through the middle button

facility.

• Also, the following constants have been changed to variables, but should only be

changed before a new TileWorld grid is created:

border, *margin-normal*, and *token-ratio*.

• The command add-obj ect on page 28 should now read:

add-object column row sides name &key :immovable :stream :time-out [Function]

Adds a tileto the database at (column, row) ifthat location isan unoccupied cellwithin

the bounds of TileWorld. sides isnormally an integer greater than two but can be any

Lisp object including listsand structures. Ifthird isan integergreater than two, itwill

be displayed via the graphics as an object with that number of sides,otherwise, itwill

appear as a solid block occupying the entire grid cell. name can be any Lisp object

including listsand structures. Ifsidesor name isa listor a structure,then data can be

stored with the object and isavailable through the sensors. See section 3.1.2,page 25

for examples on how to access this information. :immovable determines whether or

not the agent and wind can move thisobject. The value defaults to NIL.

This command returns a structure of type o.bject ifthe tilewas successfullyadded. It

returns NIL and prints a message to :stream ifthe command failsor ifit timed out.

The default for :time-out is 10 seconds.

• The command tileworld on page 29 should now read:

tileworld columns rows &key :display :agent-default :title

:cell-size :agent-size :grid-lines

[Function]

This creates a TileWorld of size columns x rows. The :title of TileWorld defaults

to "Tile World". :display must be one of the following: :graphics, :ascii or

:both. If it is :graphics, then output is handled by the graphics process only. If

itis :ascii, then the TileWorld state can only be accessed with the ASCII interface

via ascii-display. Ifitis :both, then both graphics and ASCII displays willwork.

:display defaults to :graphics.

:agent-default can be T, NIL, or a filename. :agent-default defaults to T which

indicates that the graphics package should draw a circleto represent the agent. NIL

indicates that the user should be queried for the proper bitmap. If a filename is

supplied, itmust be a Common Lisp pathname [Steele,1984, File System Interface]and

must point to an X Windows bitmap filedescribing the agent's body. See Appendix A,

page 45 for more details on the agent's body bitmap.

:title appears in the title bar of the graphics window when the graphics process is en-

abled. : cell-s ize determines the pixel size of a TileWorld cell in the graphics window,

2

This defaults to the previous number given or 66 the first time called. :agent-size

determines the agent's size in the graphics window. This value can either be a number

no greater than half that of :cell-size, or can be the keyword argument :half and it

defaults to the previous value given or to 29 the first time called. :grid-lines defaults

to T and determines if the grid lines forming the cell boundaries within TileWorld are

displayed.

• In the chapter on Programmer's Notes, under section 4.4, How the Wind Gusts

and Scripts Are Done, the second paragraph mentions "...mouse-cursor-left-in-

handler...'. It should now read "... mouse-cursor-in-handler... ". A modification was

made to the way active regions are handled. Instead of separate active grid for the

wind script creation process and the wind gust creation process, a single active grid is

used.

New features in TileWorld 2.1

• Under Section 2.2.1, Graphics Display, the following text should be included:

The graphics window is responsive to a number of button press events. If

the middle button of the mouse is pressed and held while the mouse cursor

is within a cell, the location of that cell is displayed on the title bar of the

graphics window. Also, if the middle button is pressed and held while the

cursor is over a wind script arrow residing on the border, information about

that script is displayed in the title bar. Should multiple scripts be defined in

the same arrow, the wind event that is earliest in the wind queue is selected

(i.e. the next event to be blown). Other mouse button interactions are

described later.

• Under Section 3.1.2, page 24, two macros are described: world-time-to-seconds and

seconds-to-world-time. The associated text describing the world-time command

has been changed to the following:

world-t ime seconds-p [Function]

world-time returns time in two forms, TileWorld seconds and real seconds. Real

seconds are the actual number of seconds that have passed since the TileWorld database

was started. TileWorld seconds are some multiple of the real world seconds. If seconds-

p is T, actual elapsed time is returned. If NIL, the time is returned in TileWorld seconds.

It takes longer to compute real world seconds, so in cases where speed is important you

might want to use TileWorld seconds instead. Values returned are guaranteed to never

be decreasing. The time is computed using Lisp's internal clock using the function,

get-internal-real-time. [Steele, 1984, Miscellaneous Features].

Two macros are provided for converting the two different types of times into one

another. They are world-time-to-seconds and seconds-to-worlcl-ti,,e. Each will

convert one time into the other and can take any value as long as it is a number (float

or integer).

Examples:

(world-rime r) _ 127.1

(world-time nil) _ 131987

(seconds-to-world-time 127.1) =_ 127100

(world-time-to-seconds (seconds-to-world-time 127.1)) :_ 127.1

. Under Section 3.3.1, Static Configuration Construction, the following two com-

mands should be included:

clear-tileworld [Function]

Clears all objects from the TileWorld database including the agent, removes all wind-

scripts, resets all counters, and resets the time clock to zero. However, the database is

not actually removed, the graphics window and ASCII display buffer are not recreated

(although they are updated). This command is useful because the startup time in

initializing all of the database and display buffers can be avoided. This command finds

its greatest use when running multiple tests on the same problem: restarts costs only

the time in repopulating TileWorld.

reset-worlcl-t ime &opt ional seconds [Function]

This resets the TileWorld clock back to zero or to the value of seconds should that be

supplied. This command is useful to reset the clock just before an experiment is run.

• Under Section 4.2, page 38, two Allegro CL graphics commands should be added:

act ive-region-mouse-cursor and window- stream-_ itle.

4

REPORT DOCUMENTATION PAGE OMB No 0704-0188

Pu_hc ,eoortbn£ burden _or this collect_oA of .nformaIion is estimated to average t _'our per resporse, mcludirg the time for rev4ewlng iqstr_ctlons, searching exEstlng data source-_,

_atherm,. 3 _r_ r_a_r, ta_r'_,_g the data needed, and completing ac, d reviewing the collection of reformation Send comments re,_arding t_is b_rden estimate or any other aspect of t_ls

collet_on of _rdormatIOn, _ncl_di_q<j sugge_t{on_ for reducing _his burden, tO Washington _eadquarters Services. O/rectovate fo_" itlfort_atiOn O#evatiOtls and Re[:_3rts, 1275 Jeffet_rl

Daws Hrgh.'_ay, Suite 1204, Arhngton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction PrO ect (0704-0!88}, Washington, DC 20S03.

1 AGENCY USE ONLY (Leave blank) 2_ REPORT DATE
• Dates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

r g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

3. REPORT TYPE AND DATES COVERED

S. FUNDING NUMBERS

8. PERFORMING ORGANIZATION

REPORT NUMBER

Attached

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEME NT

Available for Public Distribution

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

Abstracts ATTACHED

14. SUBJECT TERMS

17, SECURITY CLASSIFICATION
OF REPORT

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std Z]9-18
298-102

